TFAWS Aero/Cryothermal Paper Session

CO₂ Cryofreezer Coldhead and Cycle Design Insights for Mars ISRU

Jared Berg (GRC LTT)
Malay Shah (KSC NE-XY)

Presented By

Jared Berg

jared.j.berg@nasa.gov

Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

TFAWSJSC • 2018

Background

- In Situ Resource Utilization (ISRU) on Mars
 - Create propellant from Mars atmosphere
 - Must separate and compress CO₂ to utilize
 - Mars ~7 Torr (~0.1 psi), 95% CO₂, 3% N₂, 2% Ar
 - Approaches include direct compression, sorption pumps, freezer
 - Cryofreezer concept for ISRU discussed in 90s literature
 - Clark, Payne, and Trevathan experiment in 2001 (LM+JSC)
 - Describes basic configuration and tested simple coldheads

Atmospheric Processing Module

- Mars ISRU Pathfinder project APM (KSC)
 - CO₂ Freezer Twin units
 - Sabatier reactor Combine with H₂ to make CH₄

Cryofreezer Detail

- Sunpower CryoTel GT cryocooler
 - − ~37 W lift @ 150 K
 - ~20% of Carnot efficiency @ 150K
 - 240 W input
 - External water cooling loop
 - Stirling cycle, helium working fluid
- Coldtip protrudes into freezing chamber
- Coldhead mounted on coldtip with thermal grease, securing nut
- External chiller loop maintains 15C rejection temperature

Why a coldhead?

- Initial sizing of cryocooler based on target production rate
 - How many Watts to cool gas and change phase?
 - Coldhead adds additional mass (launch and thermal) to increase collection performance
- Accretion insulates coldtip
 - Solid CO₂ ~0.1 W/m/K (Cook et al)
- Previous work explored some shapes
 - Muscatello and Zubrin SBIR used metal foams
 - Clark et al. tested bare coldtip and simple coldhead geometry
 - Muscatello et al. tried three other shapes with mixed results

"Ferris wheel

Muscatello et al geometries

"starburst"

Similar Problems in Literature

- Heat sinks well explored area, but phase change and accretion typically absent, mass-production design constraints
 - Dede et al study of 3D printed, flat plate, air-cooled heat sink, gradient-based optimizer
 - Iga et al study of 2D heat sink topology, continuous material distribution interpolated with finite element method
 - These and other approaches (genetic algorithms) yield "spikey," "natural-looking" designs
- Phase change energy storage liquid-solid transition, different density and convection regimes, cycling between states
 - Sparrow et al study with paraffin freezing on finned tubes
 - Fin area / temperature boundary condition / time correlation with collected mass
 - Pizzolato et al study of topology for phase change storage, acknowledges high physics complexity and design limitations of previous work
 - Density-based optimization, conduction dominated
 - Defined time minimization and steadiness maximization metrics

Initial Testing

- Based on previous experimental paradigm
 - Ferris wheel coldhead
 - Long freezing cycles (~8 hrs) going to "steady state" accretion levels
 - Temperature based cryocooler control (150K setpoint)
 - 1.2 SLPM CO₂ flow rate
- Steady state goal was attempt to correlate with CFD models
- Question assumptions
 - Why run so long?
 - Why use temperature control of cryocooler?
 - Why care about final collected mass?

Ferris Wheel Performance (150K Fixed)

Computational Methods?

CFD

- STAR-CCM+ Melting and Solidification toolbox, volume of fluid method
- Flow / no flow configurations
- Single compound, solid / gas density change
 - Questionable accretion patterns, pseudotime

Thermal Desktop

- ACCRETE routine (basically reverse of ablation)
 - Stacked-layer technique not great for complex geometry
 - New feature, tricky to implement
 - Assumes energy is only limit on accretion rate

STAR-CCM+, flow included

STAR-CCM+, no flow

Alternate Design

Goals

- Distribute metal more efficiently
 - "Biomimetic" branching shape
 - Curved top edge
- Increase surface area
 - Increased diameter and length
 - Lattice-like surrounding belt
- Flatten and extend collection performance curve
- Demonstrate 3D printing with GRCop-84

Results

- Lower initial performance
 - Heat leaks
- Superior late-cycle performance
- 45 min to cool to 150K vs. 13 min for Ferris Wheel
- Success, but failure...

— Ferris Wheel

Branching

Cycle Insights

- Collection performance is a complicated function of surface area, conductive material distribution, etc.
- Because of temperature swing, any design must have sufficient performance to "pay off" time spent cooling 270K -> 150K
 - Minimize total mass of coldhead
 - Specific heat / conductivity
 - Scale up limit?
- Parasitic heat leaks from chamber
 - Radiation, convection to hot wall, bypass flow heating
- Early cycle performance is most critical
 - When has performance degraded sufficiently to stop and restart cycle?
 - Much shorter than we thought
 - How do the cycle and coldhead geometry interact?
- Simple optimization needed to determine ideal length of cycle and compare designs

Redesign

Goals

- Minimize mass to shorten cooling cycle
- Increase surface area, but limit size to reduce heat leaks
- Target early-cycle performance only

Results

- Max performance at beginning of cycle
- Slow performance drop after peak
- Poor late-cycle performance

Tuning Fork Performance (Max Power)

More Testing

- Added data from legacy "Starburst" design
- Includes "Ideal" case meant to envelope possible designs
- Geometry can have measureable effect on collection performance
- Not a simple function of surface area

	Ferris Wheel	Branching	Tuning Fork
Volume [in ³]	1.74	6.67	2.37
Area [in ²]	64.35	157.38 (with lattice)	128.4

Cycle Optimization

- Integrate collection performance curves
 - Assuming equal duration freezing / sublimation phases
 - · Paired cryofreezer design
 - Sublimation rate determined by method
 - Starting offset determined by cool-down time
- Peak of curve indicates highest average collection rate
- Late cycle performance (Branching) never "pays back" initial time "debt"
- Best cycle times are much shorter than prior experiments
 - Given performance plateau, can trade collection rate vs. power efficiency, reduced on/off cycles, etc.
- Tuning Fork design superior
 - ~217 min cycle, ~100 min freezing

Non-condensable Gas Effects

- Ar and N₂ remains after freezing, low temperatures and density limit diffusion rate
 - Previous work (Clark 2001) points this out and indicates importance of recirculation blower
- Differing impact on designs indicates geometry may be important
 - Tuning fork seemingly most affected
 - Ferris Wheel, Starburst most affected early in cycle
 - Branching least affected, likely due to lower overall rate
 - Additional cuts to open "pockets"?
 - More open fin spacing, larger size?

CO₂ depleted region

Conclusions

- Coldhead geometry does matter for performance
 - Tuning Fork ~11% improved cycle-averaged collection rate relative to Ferris Wheel / Starburst
 - But bounding "Ideal" case shows practical limitations
 - Only ~15% better than Ferris Wheel
 - Only 3% better than Tuning Fork
 - Worth trying harder?
- Cycle optimization is important
 - Impacts goals of coldhead geometry design
 - Allows trades with energy efficiency, system reliability, etc.

Concept

- Computational modeling is difficult
 - Multi-phase, multi-material, conduction and convection, 3D, transient, diffusion
 - Phase change energy storage analogy seems promising
- Novel concepts?
 - Self-cleaning / scraping coldhead
 - Other materials

References

- Clark, David. L., Payne, Kevin S., Trevathan, Joseph R. "Carbon Dioxide Collection and Purification System for Mars", AIAA Space 2001 Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001.
- Muscatello, A., Devor, R., Captain, J. "Atmospheric Processing Module for Mars Propellant Production". 2013.
- Sparrow, E. M., Larson, E. D., Ramsey, J. W. "Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer", Int. Journal of Heat Mass Transfer, Vol. 24, pp. 273-284, 1981.
- Dede, Ercan M., Joshi, Shailesh N., Zhou, Feng. "Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink", Journal of Mechanical Design, Vol. 137, Nov. 2015.
- Pizzolato, A., Sharma, A., Maute, K., Sciacovelli, A., Verda, V. "Topology optimization for heat transfer enhancement in latent heat thermal energy storage", International Journal of Heat and Mass Transfer, Vol. 113, pp. 875-888, 2017.
- Cook, T., Davey, G. "The density and thermal conductivity of solid nitrogen and carbon dioxide", Cryogenics, June 1976, pp 363-369.
- Iga, A., Nishiwaki, S., Izui, K., Yoshimura, M. "Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection". International Journal of Heat and Mass Transfer, Vol. 52, 2009., pp. 2721-2732.